

REHABILITATION AFTER ANATOMIC AND REVERSE TOTAL SHOULDER ARTHROPLASTY

A Critical Analysis Review

Jacob M. Kirsch, MD

Surena Namdari, MD, MSc

Investigation performed at the Departments of Orthopaedic Surgery and Shoulder and Elbow Surgery, The Rothman Institute-Thomas Jefferson University, Philadelphia, Pennsylvania

Abstract

- » Postoperative rehabilitation is believed to be essential in optimizing clinical outcome and function following shoulder arthroplasty. Despite this long-held notion, there is a paucity of high-quality evidence to guide rehabilitation protocols and practice.
- » For patients undergoing anatomic total shoulder arthroplasty (ATSA), there are insufficient comparative data regarding type or duration of sling utilization.
- » Based on current evidence, there is no appreciable benefit to early motion compared with a delayed-motion protocol following ATSA.
- » There is insufficient literature to support the use of formal physical therapy over a physician-directed program following ATSA.
- » At the present time, no high-quality evidence exists to guide the postoperative rehabilitation of patients undergoing reverse total shoulder arthroplasty (RTSA).
- » Prospective randomized controlled trials evaluating postoperative management and rehabilitation following ATSA and RTSA are needed to guide best practices and optimize clinical outcomes.

Anatomic total shoulder arthroplasty (ATSA)¹⁻⁷ and reverse total shoulder arthroplasty (RTSA)⁷⁻¹³ can result in long-term pain relief and improved clinical function. The overall rate of shoulder arthroplasty being performed in the United States has increased dramatically over the last decade and is projected to continue in this trend¹⁴⁻¹⁶. While there are numerous factors that contribute to successful results following shoulder arthroplasty, adherence to a postoperative rehabilitation protocol is

believed to be intimately correlated with patient outcomes¹⁷⁻²³. The main tenet of shoulder rehabilitation involves early joint protection with progressive functional mobilization and strengthening.

The value of postoperative therapy and rehabilitation following shoulder arthroplasty must be considered in light of the outcomes relative to time investment and cost. Particularly in the current health-care climate, optimal health-care resource utilization is paramount. Recent studies have attempted to better understand

Disclosure: The authors indicated that no external funding was received for any aspect of this work. On the **Disclosure of Potential Conflicts of Interest** forms, which are provided with the online version of the article, one or more of the authors checked “yes” to indicate that the author had a relevant financial relationship in the biomedical arena outside the submitted work; “yes” to indicate that the author had a patent and/or copyright, planned, pending, or issued, broadly relevant to this work; and “yes” to indicate that the author had other relationships or activities that could be perceived to influence, or have the potential to influence, what was written in this work (<http://links.lww.com/JBSREV/A551>).

cost utilization following shoulder arthroplasty^{24,25}. While many of the factors that influence cost after shoulder arthroplasty are nonmodifiable²⁴, home health care represents approximately 70% of postoperative cost utilization²⁵.

There is currently a lack of consensus among the numerous protocols that exist for rehabilitation following shoulder arthroplasty. Recent attempts to systematically evaluate the current literature have highlighted a paucity of high-quality evidence guiding rehabilitation practices²⁶⁻²⁹; the vast majority of the published literature consists of Level-V evidence^{18,21-23,26,28,30-32}. The purpose of this review article is to provide an evidence-based analysis of the literature (excluding Level-V evidence) supporting various aspects of the rehabilitation process following shoulder arthroplasty and to highlight areas where additional research is necessary.

ATSA

A critical factor influencing the outcome of ATSA is successful subscapularis management and postoperative function. Appropriate releases and mobilization of the subscapularis are not only necessary for adequate glenoid exposure but critical for addressing internal rotation contractures and restoring the normal horizontal force couple of the shoulder^{33,34}. Subscapularis insufficiency following ATSA is a major complication, which results in altered glenohumeral kinematics^{35,36}, pain, instability, and poor function^{33,37-40}. Even in the absence of obvious clinical deficiency, chronic denervation and reinnervation have been demonstrated in 30% of patients undergoing ATSA⁴¹. Therefore, much of the focus regarding rehabilitation has been directed to the balance between subscapularis protection and shoulder mobilization.

Sling Utilization

Little to no consensus exists on the type and duration of sling use following ATSA. Most clinical studies mention the use of some form of immobilization

following ATSA^{5,41-52}. Recently, Tirefort et al.⁵³ performed a randomized trial comparing patients with and without use of a sling postoperatively following rotator cuff repair; however, to our knowledge, no comparative study exists on patients following shoulder arthroplasty. The most commonly reported forms of immobilization following ATSA are a simple sling^{41,45,46,48,49}, a shoulder immobilizer^{43,44,50,51}, or an abduction sling^{5,42}; however, to our knowledge, no comparative data exist. The duration of immobilization also is variable, ranging from <24 hours^{41,44,46} to 6 weeks postoperatively^{5,42,43,45,48-51}, again without any comparative studies in the literature.

Despite the limited evidence on sling utilization, Baumgarten et al. provided some insight pertaining to the influence of arm position during sling immobilization following ATSA⁴⁸. They performed a Level-II randomized controlled trial comparing 36 patients who were randomized to either a neutral rotation sling or an internal rotation sling for 6 weeks after ATSA with a subscapularis tenotomy. Various functional and patient-reported outcomes were assessed, along with range of motion at various postoperative time points. No significant functional or patient-reported outcome differences were found between the groups. The neutral rotation group, when compared with the internal rotation group, demonstrated greater improvement in range of motion over time, with significant differences in active and passive external rotation with the arm in neutral (42° versus 25°, $p = 0.03$; 44° versus 26°, $p = 0.05$, respectively) as well as passive horizontal adduction ($p = 0.05$)⁴⁸. The patients who used the neutral rotation sling also had significantly less night pain at 2 weeks ($p = 0.047$); however, no long-term differences in pain were noted.

While activities are typically restricted immediately after ATSA, there is insufficient comparative data to recommend a specific type or duration of shoulder immobilization. Based on the

single Level-II study, a neutral rotation sling may have some benefit over an internal rotation sling.

Range of Motion

Another important aspect of rehabilitation following ATSA pertains to when motion should be initiated and whether any restrictions to motion should be considered. Early passive motion of the shoulder has traditionally been advocated to avoid stiffness since postoperative stiffness remains one of the most common issues in patients who are unsatisfied following shoulder arthroplasty^{54,55}. Recent literature describing rotator cuff repair demonstrates mixed results regarding early-motion protocols compared with delayed-motion protocols, with no clear consensus⁵⁶⁻⁶¹. Clinical studies have almost uniformly reported a protocol that involves early passive shoulder motion following ATSA^{5,33,41-50,62,63}. However, despite the overwhelming reporting of early-motion protocols, no comparative data exist to support the specific parameters or limitations to motion in the described protocols.

To our knowledge, there are only 2 clinical trials that have evaluated the role of early compared with delayed passive shoulder motion following ATSA^{51,52} (Table I). Most recently, Denard and Lädermann performed a Level-I randomized controlled trial comparing immediate and delayed passive motion in 55 patients undergoing ATSA with a lesser tuberosity osteotomy (LTO)⁵². Patients in the immediate-motion group used a sling for 4 weeks postoperatively and were allowed to start unlimited passive forward flexion and passive external rotation to 30° following surgery. Sling immobilization ended at 4 weeks, and patients were allowed to progress their passive external rotation without restriction and initiate active and active-assisted forward flexion. Patients in the delayed-motion group used a sling for immobilization for 4 weeks without being allowed any passive shoulder motion. Similarly, sling immobilization ended at 4 weeks, and

TABLE I Early Versus Delayed Motion After ATSA*

Study (Year)	Level of Evidence	Subscapularis Management	Immediate-Motion Protocol	Delayed-Motion Protocol	Outcomes
Denard and Lädermann ⁵² (2016)	I: randomized controlled trial	LTO	Sling: worn for 4 weeks. Motion: starting on POD #1, passive forward flexion as tolerated and passive external rotation to 30°; at 4 weeks, passive forward flexion was gradually progressed to active motion as tolerated and to passive external rotation as tolerated. Strengthening: initiated at 8 weeks. Activities as tolerated: starting at 12 weeks	Sling: worn for 4 weeks. Motion: no shoulder motion during first 4 weeks; at 4 weeks, passive forward flexion and external rotation as tolerated; at 8 weeks, gradually progress to active forward flexion and external rotation as tolerated. Strengthening: initiated at 8 weeks; initiated at 16 weeks	No significant difference in ROM, VAS, ASES, or SANE score at 1 year postoperatively. LTO healing: immediate motion (22/27, 81.5%); delayed motion (27/28, 96.4%). No significant difference between LTO healing and motion protocol ($p = 0.101$). Patients with healed LTOs had significantly better ASES scores ($p = 0.008$)
Mulieri et al. ⁵¹ (2010)	III: case-control study	Subscapularis tenotomy	Shoulder immobilizer: worn for 6 weeks. Motion: starting at POD #1 for 3 weeks, supine passive scaption to a maximum of 120° and external rotation to 20°; at weeks 4–6, progress to supine active-assisted range of motion; at weeks 7–9, progress to supine and prone active range of motion; after 9 weeks, standing active range of motion and activities of daily living. Strengthening: initiated at 9 weeks. Activities as tolerated: starting at 9 weeks	Shoulder immobilizer: worn for 6–8 weeks. Motion: only pendulum exercises allowed for the first 6–8 weeks; after 6–8 weeks, supine active-assisted forward flexion and activities of daily living; after 14 weeks, allowed to participate in activities as tolerated. Strengthening: no formal strengthening. Activities as tolerated: after 14 weeks	Note: The immediate-motion group received formal physical therapy, whereas the delayed-motion group received a physician-directed therapy protocol. No difference in ASES or SST score at any time point. The delayed-motion group had significantly better forward flexion (154° vs. 119°; $p = 0.024$) and abduction (147° vs. 108°; $p = 0.03$) at the time of the final follow-up

*ATSA = anatomic total shoulder arthroplasty, LTO = lesser tuberosity osteotomy, POD = postoperative day, ROM = range of motion, VAS = visual analog scale, ASES = American Shoulder and Elbow Surgeons, SST = Simple Shoulder Test, and SANE = Single Assessment Numeric Evaluation.

patients then were allowed unrestricted passive forward elevation and external rotation. At 8 weeks, patients were allowed to begin unrestricted active and active-assisted motion. Both groups began strengthening exercises at 8 weeks postoperatively. While the immediate-motion group demonstrated better visual analog scale (VAS) pain, American Shoulder and Elbow Surgeons (ASES), and Single Assessment Numeric Evaluation (SANE) scores initially, no differences existed from 3 months onward. Additionally,

there were no significant differences in range of motion at 1 year. Of note, the authors evaluated LTO healing and found that 22 (81%) of 27 patients healed in the immediate-motion group compared with 27 (96%) of 28 patients in the delayed-motion group; however, this difference was not significant ($p = 0.101$). Furthermore, improved functional outcome scores were evident when the LTO had healed. These results suggested little clinical and functional downside to delaying passive motion, with the possible benefit of

improved LTO healing when compared with an immediate-motion protocol.

Mulieri et al. also evaluated the concept of immediate versus delayed motion following ATSA⁵¹. They performed a retrospective Level-III analysis of 81 patients undergoing ATSA with a subscapularis tenotomy. Patients either began immediate passive range of motion and formal physical therapy or had 6 weeks of immobilization with only pendulum exercises with a subsequent physician-directed home exercise

program. At the time of final follow-up, compared with the immediate-motion group, the delayed-motion group had better forward flexion (154° versus 119°, $p = 0.024$) and better abduction (147° versus 108°, $p = 0.03$). Of note, there was no evaluation of external rotation or assessment of tendon healing in the study.

In addition to the concept of early or delayed passive motion, the range of motion allowed by surgeons following ATSA varies considerably and lacks consensus. To our knowledge, to date, there have been no comparative studies evaluating specific restrictions in this regard. Most studies report restricted passive external rotation to 30° to 40° for a certain period postoperatively^{33,41,42,46,49,52,63}, whereas other authors restricted passive external rotation to neutral^{5,43,45,47,62}. Additionally, some studies have reported initial passive forward flexion only to approximately 90°^{5,43,45,47,62}, whereas others encouraged more liberal forward flexion to 130° or more^{33,41,42,46,63}. Biomechanical data suggest that having restrictions to external rotation and abduction following shoulder arthroplasty may be beneficial for decreasing the strain on the repaired subscapularis^{20,64}.

Despite the popular notion of early passive motion following shoulder arthroplasty, the 2 studies with Level-I and Level-III evidence that directly evaluated this concept demonstrated no appreciable benefit to early motion compared with a delayed protocol. Limited evidence suggests that early motion may adversely influence healing rates after LTO. Additional research dedicated to elucidating the potential effects of early motion on subscapularis repair integrity and functional outcome following shoulder arthroplasty is necessary. There is currently insufficient evidence to recommend restrictions to passive or active motion in the early period following shoulder arthroplasty.

Strengthening

Maintaining reestablished muscular balance through periscapular and rota-

tor cuff strengthening is believed to be an important component of postoperative rehabilitation following ATSA. Scapulothoracic motion contributes more to overall shoulder motion after ATSA when compared with healthy shoulders⁶⁵. Therefore, strengthening of periscapular musculature, including the lower trapezius and the serratus anterior with retraction and protraction exercises, is beneficial to promote neuromuscular scapular control while minimizing stress across the glenohumeral joint. Gradual strengthening of the rotator cuff is necessary for dynamic shoulder balance and for the longevity of the prosthesis; however, this is often delayed, allowing for healing of the subscapularis. Baumgarten et al. reported that improvement in shoulder strength following ATSA was associated with improved shoulder activity level and SANE scores⁴⁹. However, to our knowledge, there are no comparative studies, and only with limited clinical evidence overall to guide the timing and nature of strengthening protocols following ATSA.

Physical Therapy After ATSA

The vast majority of patients participate in either physician-directed home therapy or formal therapist-directed physical rehabilitation following ATSA. Based on an insurance claims database, Wagner et al. recently highlighted the substantial variability in the utilization of formal therapy following shoulder arthroplasty⁶⁶. Moreover, to our knowledge, there are no clinical trials that have compared physical therapy or strengthening protocols following ATSA, and most of the reported literature provides insufficient data regarding the specific therapy protocols to draw any meaningful conclusions.

Limited evidence supports the use of a home-based therapy program following ATSA^{19,51}. Boardman et al. challenged the notion of mandatory formal therapy and strengthening following ATSA¹⁹. They reported on 81 patients undergoing ATSA followed by a home-based therapy program consisting of passive shoulder motion for 5 weeks, after which progressive active motion and light

isometric strengthening exercises were performed¹⁹. While only 80% of patients had a satisfactory outcome, it is hard to know whether some of those patients would have been better managed with an RTSA, which was not available during that time. As mentioned above, Mulieri et al. performed a Level-III retrospective study evaluating patients undergoing ATSA with 2 different postoperative protocols⁵¹. Of note, the senior author changed his postoperative protocol to one that was surgeon-directed out of concern for overly aggressive formal therapy. The patients in the home therapy group used a shoulder immobilizer for 6 to 8 weeks, and only pendulum exercises were allowed during that time. Immobilization was discontinued after 6 to 8 weeks, and the patients started doing supine active-assisted forward flexion. By 14 weeks, they were allowed to participate in unrestricted activities. Compared with the formal therapy group, patients in the home-based therapy group had better forward flexion (154° versus 119°, $p = 0.024$) and better abduction (147° versus 108°, $p = 0.03$)⁵¹.

Based on the available evidence, there is no literature to support the use of formal physical therapy over a physician-directed program. Prospective evaluation of the functional and economic differences for different types of postoperative therapy following ATSA is particularly pertinent in the current health-care climate. Additionally, there is no consensus in the literature regarding the timing and nature of strengthening following ATSA.

RTSA

RTSA has unique biomechanics and is indicated for a wider breadth of shoulder pathology compared with ATSA. Therefore, rehabilitation of patients undergoing RTSA must be considered as a separate entity. To date, there is little to no consensus regarding the postoperative management of patients undergoing RTSA because of the lack of any prospective comparative literature evaluating rehabilitation protocols. In the following sections, we attempt to provide an evidence-based evaluation of

rehabilitation protocols after RTSA and highlight knowledge gaps.

Sling Utilization

Little to no consensus exists regarding sling utilization following RTSA. Similar to ATSA, while initial immobilization is nearly universally reported, there are substantial discrepancies regarding the type and duration of immobilization. As with ATSA, the most commonly used designs are the simple sling⁶⁷⁻⁷², the shoulder immobilizer^{12,73,74}, and the abduction sling⁷⁵⁻⁷⁹. Currently, to our knowledge, no comparative studies exist evaluating the type of immobilization following RTSA. However, unlike ATSA, the overwhelming majority of clinical literature reports 4 to 6 weeks of immobilization following

RTSA^{12,67,69-71,73,74,76-80}. We found no comparative studies evaluating the duration of immobilization following RTSA.

Early instability is a more substantial concern after RTSA than after ATSA⁸¹⁻⁸³. Cheung et al. reported a 9.2% rate of early instability following RTSA. Of those patients, 45% remained unstable following initial reduction, and they ultimately required a revision operation⁸¹. The authors identified several risk factors, including male sex, prior open surgery, fracture sequelae, and an irreparable subscapularis. Of note, following the initial surgery, an abduction sling was used for immobilization for 6 weeks, and the mean time to instability was 8 weeks. Chalmers et al. reported early instability in 2.9% of their patients, which occurred at a mean of 3.4 weeks postoperatively⁸². Postoperative immobilization with a simple sling was used initially with all of the patients, and only pendulum exercises were permitted until 4 weeks. Similar to the study by Cheung et al.⁸¹, male sex, previous surgery, and an irreparable subscapularis were associated with instability following RTSA. Kohan et al. reported on a cohort of patients who dislocated within 3 months of RTSA⁸³. Of these patients, 50% dislocated within the first 2 weeks.

Immobilization with a simple sling for 2 to 3 weeks postoperatively was used initially with all of the patients, and they were restricted from internal rotation for 6 weeks.

While the literature lacks conclusive evidence regarding the type and duration of immobilization, it does not appear that early immobilization eliminates early instability⁸¹. Because many instability events are atraumatic in nature, it is unclear whether immobilization reduces the risk of dislocation. Prospective evaluation directly comparing early immobilization with early mobilization is necessary to understand whether there is an effect on early instability and ultimate functional outcomes after RTSA.

Range of Motion

There is no consensus regarding the initiation and progression of passive or active motion following RTSA. There are several factors that influence when shoulder motion should be started, including subscapularis protection (if a repair was performed), the risk of early instability, and the concern for early acromial stress^{71,81,82,84}. There is substantial disagreement in the literature between reports of immediate passive range of motion^{12,69,71,75-77,80} and delayed passive range of motion^{67,70,73,74,78,85-87}. The majority of studies report delaying the initiation of passive motion for up to 1 week postoperatively^{67,70,72,74,78,85}; however, other authors have reported waiting longer to initiate passive motion^{73,87}. Differences also exist in the literature when it comes to initiating active range of motion. Most studies indicate waiting at least 4 weeks to start active motion^{12,67,69,70,73,74,76,78,80,85}. The use of continuous passive motion protocols also has been reported; however, the evidence is very limited⁷⁸. To our knowledge, no prospective comparative study currently exists evaluating range-of-motion protocols following RTSA. Given the variability in the literature and the lack of prospective comparative studies, there is insufficient evidence to recommend for or against

specific range-of-motion protocols following RTSA.

Strengthening

RTSA alters shoulder biomechanics and relies more heavily on deltoid and periscapular muscle function than ATSA⁸⁸. Several authors have evaluated the effect of RTSA on glenohumeral kinematics, which provides some insight pertaining to optimizing rehabilitation^{65,89-93}. Following RTSA, there is altered scapulohumeral rhythm compared with the native shoulder, with decreased glenohumeral elevation and more reliance on the deltoid, the scapula, and the trapezius for shoulder abduction^{65,89,90,92,93}. Wiater et al. highlighted the importance of deltoid function by reporting that patients with larger deltoid size and less fatty infiltration had greater functional outcomes and strength following RTSA⁹⁴. Electromyographic analysis also has demonstrated that shoulders with a reverse prosthesis have greater muscle activation in the deltoid and the trapezius compared with normal shoulders⁹⁰. Matsuki et al. found that no changes in shoulder kinematics occurred after 6 months following RTSA⁹¹, which interestingly correlates with when these patients appear to plateau clinically⁷.

Deltoid and periscapular function are critical following RTSA. Based on the available evidence, patients may benefit from scapulothoracic and deltoid rehabilitation after RTSA; however, the extent to which this should be performed cannot be concluded. Most studies indicate waiting until at least 8 weeks postoperatively to start a strengthening program^{70,73,74,76,87}; however, due to the lack of comparative data, it is unclear if there is an optimal time to start strengthening.

Special Scenarios

Concomitant Tendon Transfer

Depending on rotator cuff status, external rotation may not be reliably restored following RTSA⁹⁵. Concomitant tendon transfer at the time of RTSA can help restore external rotation,

particularly in abduction. There is limited evidence guiding the rehabilitation of these patients, which is based largely on case series. Boileau et al. reported on patients undergoing RTSA with a combined latissimus dorsi and teres major transfer^{96,97}. Postoperatively, the arm was immobilized in 30° of abduction and 30° of external rotation for 6 weeks before allowing any shoulder motion. Patients began passive elevation and rotation with a therapist at 6 weeks. Internal rotation was limited for 12 weeks, and therapy lasting anywhere from 6 to 12 months was advocated. A similar protocol was reported by Boughebri et al. following RTSA with combined latissimus dorsi and teres major transfer⁹⁸. Shi et al. also reported on a similar procedure; however, their patients used a neutral rotation brace for 6 weeks postoperatively with no active shoulder motion during that time⁹⁹. At 4 weeks, physical therapy was started, but passive external rotation was limited to 30° to 40° and internal rotation was delayed until 6 weeks. The authors also commented on the use of biofeedback during rehabilitation, starting at 10 to 12 weeks⁹⁹.

Other studies have reported on isolated latissimus dorsi tendon transfer during RTSA^{100,101}. Gerber et al. had their patients use a brace for immobilization in 20° of abduction and neutral rotation for 2 to 10 days following surgery and then transitioned them to a sling¹⁰⁰. Passive forward elevation was started as early as postoperative day 2, with active-assisted motion starting at 6 weeks and strengthening starting at 3 months. Conversely, Ortmaier et al. had patients use a sling for immobilization for 6 weeks postoperatively, after which active range of motion was begun¹⁰¹. Patients in this series were allowed to begin activity as tolerated as early as 12 weeks postoperatively.

Revision Surgery

RTSA may be a more reliable option for failed or revision shoulder arthroplasty in certain patients. However, studies evaluating RTSA in the setting of revi-

sion surgery have noted higher rates of complications, including reoperation and instability¹⁰²⁻¹⁰⁶. As a result, most studies have reported 4 to 6 weeks of shoulder immobilization with limited early motion^{12,107-111}. While pendulum exercises often were the only permitted shoulder motion postoperatively, active motion regularly was delayed until 6 weeks^{12,107,108,111}. Given the higher rate of complications associated with revision surgery, a nonoperative approach for postoperative rehabilitation may be warranted; however, there is currently little evidence to guide recommendations.

Proximal Humeral Fracture

RTSA represents an attractive option for older lower-demand patients with proximal humeral fractures. A unique advantage of RTSA for fracture is that tuberosity healing is not required for good function, although better outcomes have been reported when the tuberosities heal^{112,113}. To date, to our knowledge, there are no comparative studies evaluating postoperative immobilization or rehabilitation following

RTSA for proximal humeral fractures. Immobilization with an abduction sling has biomechanically been shown to reduce rotator cuff tension¹¹⁴; however, the clinical impact following RTSA for fracture remains uncertain. Klein et al. had patients use an abduction sling for immobilization for 4 weeks postoperatively following RTSA for fracture⁷⁸. Patients were limited to 90° of passive flexion and abduction, without any internal or external rotation limitation, for 2 weeks, and they had no motion restriction after 4 weeks. Chalmers et al. reported a nonoperative approach where immobilization was used for 4 weeks without pendulum exercises or passive shoulder motion⁸². Boileau et al. had patients use a neutral rotation sling for immobilization for 4 weeks while participating in a self-directed passive range-of-motion program starting immediately postoperatively¹³. After 4 weeks, the sling was discontinued and formal therapy was started, with return to full activities by 3 to 6 months. Other variations of postoperative protocols have been reported^{70,115,116}; however, the lack of consensus regarding

TABLE II Grades of Recommendation for Rehabilitation After Shoulder Arthroplasty

Intervention	Grade*	
	ATSA	RTSA
Sling utilization		
Use of sling	B	B
Type of sling	I	I
Duration of sling wear	I	C
Motion		
Early-motion protocol	B	I
Delayed-motion protocol	B	I
Motion restrictions	I	I
Formal postoperative therapy/strengthening	I	I
Home-based postoperative therapy/strengthening	C	I

*ATSA = anatomic total shoulder arthroplasty, and RTSA = reverse total shoulder arthroplasty. Grade A: good evidence (Level-I studies with consistent findings) for or against recommending intervention. Grade B: fair evidence (Level-II or III studies with consistent findings) for or against recommending intervention. Grade C: conflicting or poor-quality evidence (Level-IV or V studies) not allowing a recommendation for or against intervention. Grade I: there is insufficient evidence to make a recommendation.

postoperative rehabilitation precludes evidence-based recommendations.

Weight-Bearing Upper Extremity

Wheelchair-reliant patients often depend heavily on the use of their upper extremities for mobility and transfers. Not surprisingly, these patients can have high rates of shoulder pathology¹¹⁷. Performing RTSA in these patients requires a substantial amount of consideration. There is currently limited evidence to guide the rehabilitation of wheelchair-reliant patients following RTSA^{118,119}. Kemp et al.¹¹⁸ and Alentorn-Geli et al.¹¹⁹ used sling immobilization with wheelchair-reliant patients for 6 weeks following RTSA, while allowing limited passive range of motion. Both studies discontinued sling immobilization and started active and active-assisted range of motion at 6 weeks, and allowed patients to use their arm for transfers at 3 to 4 months. Kemp et al. reported 2 dislocations at approximately 3 months postoperatively, which coincided with the time period for starting to use the arm for weight-bearing. No complications were reported by Alentorn-Geli et al., and all of the patients reported that they would undergo RTSA again.

Overview

ATSA and RTSA can reliably provide pain relief and restore function for individuals with a variety of shoulder conditions. While there has been a dramatic increase in the rate of these procedures being performed and in the amount of published literature on various outcomes, there is a remarkable lack of clinical evidence guiding the rehabilitation of these patients. Prospective randomized controlled trials evaluating postoperative management and rehabilitation following ATSA and RTSA are needed to guide best practices and optimize clinical outcomes. Summarizing recommendations for the rehabilitation of patients undergoing ATSA and RTSA (Table II) are currently limited secondary to the paucity of high-quality evidence. Additional prospective trials

evaluating various components of the rehabilitation process are needed to maximize patient outcome and optimize resource utilization.

Jacob M. Kirsch, MD¹,
Surena Namdari, MD, MSc¹

¹Departments of Orthopaedic Surgery and Shoulder and Elbow Surgery, The Rothman Institute-Thomas Jefferson University, Philadelphia, Pennsylvania

Email address for S. Namdari:
Surena.Namdari@rothmaninstitute.com

ORCID iD for J.M. Kirsch:

[0000-0002-1368-3512](#)

ORCID iD for S. Namdari:

[0000-0002-8222-554X](#)

References

- Denard PJ, Raiss P, Sowa B, Walch G. Mid- to long-term follow-up of total shoulder arthroplasty using a keeled glenoid in young adults with primary glenohumeral arthritis. *J Shoulder Elbow Surg*. 2013 Jul;22(7):894-900. Epub 2013 Jan 9.
- Lo IK, Litchfield RB, Griffin S, Faber K, Patterson SD, Kirkley A. Quality-of-life outcome following hemiarthroplasty or total shoulder arthroplasty in patients with osteoarthritis. A prospective, randomized trial. *J Bone Joint Surg Am*. 2005 Oct;87(10):2178-85.
- Deshmukh AV, Koris M, Zurkowski D, Thornhill TS. Total shoulder arthroplasty: long-term survivorship, functional outcome, and quality of life. *J Shoulder Elbow Surg*. 2005 Sep-Oct;14(5):471-9.
- Montoya F, Magosch P, Scheiderer B, Lichtenberg S, Melean P, Habermeyer P. Midterm results of a total shoulder prosthesis fixed with a cementless glenoid component. *J Shoulder Elbow Surg*. 2013 May;22(5):628-35. Epub 2012 Oct 26.
- Raiss P, Aldinger PR, Kasten P, Rickert M, Loew M. Total shoulder replacement in young and middle-aged patients with glenohumeral osteoarthritis. *J Bone Joint Surg Br*. 2008 Jun; 90(6):764-9.
- Schnetzke M, Rick S, Raiss P, Walch G, Loew M. Mid-term results of anatomical total shoulder arthroplasty for primary osteoarthritis using a short-stemmed cementless humeral component. *Bone Joint J*. 2018 May 1;100-B(5):603-9.
- Simovitch RW, Friedman RJ, Cheung EV, Flurin PH, Wright T, Zuckerman JD, Roche C. Rate of improvement in clinical outcomes with anatomic and reverse total shoulder arthroplasty. *J Bone Joint Surg Am*. 2017 Nov 1;99(21):1801-11.
- Ernstbrunner L, Andronic O, Grubhofer F, Camenzind RS, Wieser K, Gerber C. Long-term results of reverse total shoulder arthroplasty for rotator cuff dysfunction: a systematic review of longitudinal outcomes. *J Shoulder Elbow Surg*. 2019 Apr;28(4):774-81. Epub 2019 Jan 21.
- Gerber C, Canonica S, Catanzaro S, Ernstbrunner L. Longitudinal observational study of reverse total shoulder arthroplasty for irreparable rotator cuff dysfunction: results after 15 years. *J Shoulder Elbow Surg*. 2018 May; 27(5):831-8. Epub 2018 Jan 3.
- Bacle G, Nové-Josserand L, Garaud P, Walch G. Long-term outcomes of reverse total shoulder arthroplasty: a follow-up of a previous study. *J Bone Joint Surg Am*. 2017 Mar 15;99(6):454-61.
- Otto RJ, Clark RE, Frankle MA. Reverse shoulder arthroplasty in patients younger than 55 years: 2- to 12-year follow-up. *J Shoulder Elbow Surg*. 2017 May;26(5):792-7. Epub 2016 Dec 26.
- Walker M, Willis MP, Brooks JP, Pupello D, Mulieri PJ, Frankle MA. The use of the reverse shoulder arthroplasty for treatment of failed total shoulder arthroplasty. *J Shoulder Elbow Surg*. 2012 Apr;21(4):514-22. Epub 2011 Jun 8.
- Boileau P, Alta TD, Decroocq L, Sirveaux F, Clavert P, Favard L, Chelli M. Reverse shoulder arthroplasty for acute fractures in the elderly: is it worth reattaching the tuberosities? *J Shoulder Elbow Surg*. 2019 Mar;28(3):437-44. Epub 2018 Dec 18.
- Trofa D, Rajaei SS, Smith EL. Nationwide trends in total shoulder arthroplasty and hemiarthroplasty for osteoarthritis. *Am J Orthop (Belle Mead NJ)*. 2014 Apr;43(4):166-72.
- Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. *J Bone Joint Surg Am*. 2011 Dec 21;93(24):2249-54.
- Day JS, Lau E, Ong KL, Williams GR, Ramsey ML, Kurtz SM. Prevalence and projections of total shoulder and elbow arthroplasty in the United States to 2015. *J Shoulder Elbow Surg*. 2010 Dec;19(8):1115-20. Epub 2010 Jun 15.
- Compito CA, Self EB, Bigliani LU. Arthroplasty and acute shoulder trauma. Reasons for success and failure. *Clin Orthop Relat Res*. 1994 Oct;307:27-36.
- Hughes M, Neer CS 2nd. Glenohumeral joint replacement and postoperative rehabilitation. *Phys Ther*. 1975 Aug;55(8):850-8.
- Boardman ND 3rd, Cofield RH, Bengtson KA, Little R, Jones MC, Rowland CM. Rehabilitation after total shoulder arthroplasty. *J Arthroplasty*. 2001 Jun;16(4):483-6.
- Wright T, Easley T, Bennett J, Struk A, Conrad B. Shoulder arthroplasty and its effect on strain in the subscapularis muscle. *Clin Biomech (Bristol, Avon)*. 2015 May;30(4):373-6. Epub 2015 Feb 23.
- Boudreau S, Boudreau ED, Higgins LD, Wilcox RB 3rd. Rehabilitation following reverse total shoulder arthroplasty. *J Orthop Sports Phys Ther*. 2007 Dec;37(12):734-43. Epub 2007 Aug 28.
- Routman HD. Indications, technique, and pitfalls of reverse total shoulder arthroplasty for proximal humerus fractures. *Bull Hosp Jt Dis (2013)*. 2013;71(Suppl 2):64-7.
- Kwaees TA, Charalambous CP. Reverse shoulder arthroplasty—minimum age for surgery, postoperative rehabilitation and long term restrictions. A Delphi consensus study. *Ortop Traumatol Rehabil*. 2014 Jul-Aug;16(4): 435-9.
- Davis DE, Paxton ES, Maltenfort M, Abboud J. Factors affecting hospital charges after total shoulder arthroplasty: an evaluation of the National Inpatient Sample database. *J Shoulder Elbow Surg*. 2014 Dec;23(12):1860-6. Epub 2014 Aug 23.
- Virani NA, Williams CD, Clark R, Polikandriotis J, Downes KL, Frankle MA.

Preparing for the bundled-payment initiative: the cost and clinical outcomes of reverse shoulder arthroplasty for the surgical treatment of advanced rotator cuff deficiency at an average 4-year follow-up. *J Shoulder Elbow Surg.* 2013 Dec;22(12):1612-22. Epub 2013 Apr 6.

26. Bullock GS, Garrigues GE, Ledbetter L, Kennedy J. A systematic review of proposed rehabilitation guidelines following anatomic and reverse shoulder arthroplasty. *J Orthop Sports Phys Ther.* 2019 May;49(5):337-46. Epub 2019 Apr 25.

27. Edwards PK, Ebert JR, Littlewood C, Ackland T, Wang A. Effectiveness of formal physical therapy following total shoulder arthroplasty: a systematic review. *Shoulder Elbow.* 2018 November 25. [Epub ahead of print].

28. Fusaro I, Orsini S, Stignani S, Creta D, Cava FC, Benedetti MG; Società Italiana di Chirurgia della Spalla e del Gomito. Proposal for SICSeG guidelines for rehabilitation after anatomical shoulder prosthesis in concentric shoulder osteoarthritis. *Musculoskelet Surg.* 2013 Jun; 97(Suppl 1):31-7. Epub 2013 Apr 16.

29. Buchmann S, Schoch C, Grim C, Jung C, Beitzel K, Klose M, Mauch B, Pfalzer F, Tepohl L, Tholen R, Gottfried T, Ortmann H, Scheibel M, Mauch F. Rehabilitation following reverse shoulder arthroplasty. *Obere Extremität.* 2019 April 4. [Epub ahead of print].

30. Wilcox RB, Arslanian LE, Millett P. Rehabilitation following total shoulder arthroplasty. *J Orthop Sports Phys Ther.* 2005 Dec;35(12):821-36.

31. Blacknall J, Neumann L. Rehabilitation following reverse total shoulder replacement. *Shoulder Elbow.* 2017;3(4):232-40.

32. Brown DD, Friedman RJ. Postoperative rehabilitation following total shoulder arthroplasty. *Orthop Clin North Am.* 1998 Jul; 29(3):535-47.

33. Miller SL, Hazrati Y, Klepps S, Chiang A, Flatow EL. Loss of subscapularis function after total shoulder replacement: a seldom recognized problem. *J Shoulder Elbow Surg.* 2003 Jan-Feb;12(1):29-34.

34. Cleeman E, Brunelli M, Gothelf T, Hayes P, Flatow EL. Releases of subscapularis contracture: an anatomic and clinical study. *J Shoulder Elbow Surg.* 2003 May-Jun;12(3): 231-6.

35. Terrier A, Larrea X, Malfroy Camine V, Pioletti DP, Farron A. Importance of the subscapularis muscle after total shoulder arthroplasty. *Clin Biomech (Bristol, Avon).* 2013 Feb;28(2):146-50. Epub 2013 Jan 18.

36. Si WR, Budoff JE, Luo ZP. The effect of anterosuperior rotator cuff tears on glenohumeral translation. *Arthroscopy.* 2009 Mar;25(3):282-9. Epub 2008 Dec 18.

37. Miller BS, Joseph TA, Noonan TJ, Horan MP, Hawkins RJ. Rupture of the subscapularis tendon after shoulder arthroplasty: diagnosis, treatment, and outcome. *J Shoulder Elbow Surg.* 2005 Sep-Oct;14(5):492-6.

38. Brems JJ. Complications of shoulder arthroplasty: infections, instability, and loosening. *Instr Course Lect.* 2002;51:29-39.

39. Bohsali KI, Wirth MA, Rockwood CA Jr. Complications of total shoulder arthroplasty. *J Bone Joint Surg Am.* 2006 Oct;88(10): 2279-92.

40. Moeckel BH, Altchek DW, Warren RF, Wickiewicz TL, Dines DM. Instability of the shoulder after arthroplasty. *J Bone Joint Surg Am.* 1993 Apr;75(4):492-7.

41. Armstrong A, Lashgari C, Teeffey S, Menendez J, Yamaguchi K, Galatz LM. Ultrasound evaluation and clinical correlation of subscapularis repair after total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2006 Sep-Oct;15(5):541-8. Epub 2006 Jul 27.

42. Levine WN, Munoz J, Hsu S, Byram IR, Bigliani LU, Ahmad CS, Kongmalai P, Shillingford JN. Subscapularis tenotomy versus lesser tuberosity osteotomy during total shoulder arthroplasty for primary osteoarthritis: a prospective, randomized controlled trial. *J Shoulder Elbow Surg.* 2019 Mar;28(3):407-14.

43. Caplan JL, Whitfield B, Neviser RJ. Subscapularis function after primary tendon to tendon repair in patients after replacement arthroplasty of the shoulder. *J Shoulder Elbow Surg.* 2009 Mar-Apr;18(2):193-6; discussion 197-8. Epub 2008 Dec 31.

44. Jackson JD, Cil A, Smith J, Steinmann SP. Integrity and function of the subscapularis after total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2010 Oct;19(7):1085-90. Epub 2010 May 26.

45. Lapow PL, Sabri E, Rakhrus K, Bell K, Athwal GS. Comparison of lesser tuberosity osteotomy to subscapularis peel in shoulder arthroplasty: a randomized controlled trial. *J Bone Joint Surg Am.* 2012 Dec 19;94(24):2239-46.

46. Scalise JJ, Ciccone J, Iannotti JP. Clinical, radiographic, and ultrasonographic comparison of subscapularis tenotomy and lesser tuberosity osteotomy for total shoulder arthroplasty. *J Bone Joint Surg Am.* 2010 Jul 7;92(7):1627-34.

47. Jandhyala S, Unnithan A, Hughes S, Hong T. Subscapularis tenotomy versus lesser tuberosity osteotomy during total shoulder replacement: a comparison of patient outcomes. *J Shoulder Elbow Surg.* 2011 Oct; 20(7):1102-7. Epub 2011 Jun 29.

48. Baumgartner KM, Osborn R, Schweinle WE 3rd, Zens MJ. The position of sling immobilization influences the outcomes of anatomic total shoulder arthroplasty: a randomized, single-blind, prospective study. *J Shoulder Elbow Surg.* 2018 Dec;27(12):2120-8.

49. Baumgartner KM, Osborn R, Schweinle WE Jr, Zens MJ. The influence of anatomic total shoulder arthroplasty using a subscapularis tenotomy on shoulder strength. *J Shoulder Elbow Surg.* 2018 Jan;27(1):82-9. Epub 2017 Aug 23.

50. Levy JC, Ashukem MT, Formaini NT. Factors predicting postoperative range of motion for anatomic total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2016 Jan;25(1):55-60. Epub 2015 Aug 6.

51. Mulieri PJ, Holcomb JO, Dunning P, Pliner M, Bogle RK, Pupello D, Franke MA. Is a formal physical therapy program necessary after total shoulder arthroplasty for osteoarthritis? *J Shoulder Elbow Surg.* 2010 Jun;19(4):570-9. Epub 2009 Oct 2.

52. Denard PJ, Lädermann A. Immediate versus delayed passive range of motion following total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2016 Dec;25(12):1918-24. Epub 2016 Oct 7.

53. Tirefort J, Schwitzguébel AJ, Collin P, Nowak A, Plomb-Holmes C, Lädermann A. Postoperative mobilization after superior rotator cuff repair: sling versus no sling: a randomized prospective study. *J Bone Joint Surg Am.* 2019 Mar 20;101(6):494-503.

54. Franta AK, Linters TR, Mounce D, Neradilek B, Matsen FA 3rd. The complex characteristics of 282 unsatisfactory shoulder arthroplasties. *J Shoulder Elbow Surg.* 2007 Sep-Oct;16(5): 555-62. Epub 2007 May 16.

55. Hasan SS, Leith JM, Campbell B, Kapil R, Smith KL, Matsen FA 3rd. Characteristics of unsatisfactory shoulder arthroplasties. *J Shoulder Elbow Surg.* 2002 Sep-Oct;11(5):431-41.

56. Lee BG, Cho NS, Rhee YG. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. *Arthroscopy.* 2012 Jan;28(1):34-42. Epub 2011 Oct 20.

57. Cuff DJ, Pupello DR. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol. *J Shoulder Elbow Surg.* 2012 Nov;21(11):1450-5. Epub 2012 May 2.

58. Keener JD, Galatz LM, Stobbs-Cucchi G, Patton R, Yamaguchi K. Rehabilitation following arthroscopic rotator cuff repair: a prospective randomized trial of immobilization compared with early motion. *J Bone Joint Surg Am.* 2014 Jan 1;96(1):11-9.

59. Koh KH, Lim TK, Shon MS, Park YE, Lee SW, Yoo JC. Effect of immobilization without passive exercise after rotator cuff repair: randomized clinical trial comparing four and eight weeks of immobilization. *J Bone Joint Surg Am.* 2014 Mar 19;96(6):e44.

60. Chang KV, Hung CY, Han DS, Chen WS, Wang TG, Chien KL. Early versus delayed passive range of motion exercise for arthroscopic rotator cuff repair: a meta-analysis of randomized controlled trials. *Am J Sports Med.* 2015 May;43(5):1265-73. Epub 2014 Aug 20.

61. Kluczynski MA, Nayyar S, Marzo JM, Bisson LJ. Early versus delayed passive range of motion after rotator cuff repair: a systematic review and meta-analysis. *Am J Sports Med.* 2015 Aug; 43(8):2057-63. Epub 2014 Oct 8.

62. Gerber C, Yian EH, Pfirrmann CA, Zumstein MA, Werner CM. Subscapularis muscle function and structure after total shoulder replacement with lesser tuberosity osteotomy and repair. *J Bone Joint Surg Am.* 2005 Aug;87(8):1739-45.

63. Armstrong AD, Southam JD, Horne AH, Hollenbeck CS, Flemming DJ, Kothari MJ. Subscapularis function after total shoulder arthroplasty: electromyography, ultrasound, and clinical correlation. *J Shoulder Elbow Surg.* 2016 Oct;25(10):1674-80. Epub 2016 May 31.

64. Muraki T, Aoki M, Uchiyama E, Takasaki H, Murakami G, Miyamoto S. A cadaveric study of strain on the subscapularis muscle. *Arch Phys Med Rehabil.* 2007 Jul;88(7):941-6.

65. de Toledo JM, Loss JF, Janssen TW, van der Scheer JW, Alta TD, Willems WJ, Veeger DH. Kinematic evaluation of patients with total and reverse shoulder arthroplasty during rehabilitation exercises with different loads. *Clin Biomech (Bristol, Avon).* 2012 Oct;27(8): 793-800. Epub 2012 May 13.

66. Wagner ER, Solberg MJ, Higgins LD. The utilization of formal physical therapy after shoulder arthroplasty. *J Orthop Sports Phys Ther.* 2018 Nov;48(11):856-63. Epub 2018 May 8.

67. Cazeneuve JF, Cristofari DJ. Delta III reverse shoulder arthroplasty: radiological outcome for acute complex fractures of the proximal humerus in elderly patients. *Orthop Traumatol Surg Res.* 2009 Sep;95(5):325-9. Epub 2009 Jul 16.

68. Gillespie RJ, Garrigues GE, Chang ES, Namdari S, Williams GR Jr. Surgical exposure for reverse total shoulder arthroplasty: differences in approaches and outcomes. *Orthop Clin North Am.* 2015 Jan;46(1):49-56.

69. Mizuno N, Denard PJ, Raiss P, Walch G. The clinical and radiographical results of reverse total shoulder arthroplasty with eccentric glenosphere. *Int Orthop.* 2012 Aug;36(8):1647-53. Epub 2012 Apr 26.

70. Ross M, Hope B, Stokes A, Peters SE, McLeod I, Duke PF. Reverse shoulder arthroplasty for the treatment of three-part and four-part proximal humeral fractures in the elderly. *J Shoulder Elbow Surg.* 2015 Feb;24(2):215-22. Epub 2014 Aug 29.

71. Walch G, Mottier F, Wall B, Boileau P, Molé D, Favard L. Acromial insufficiency in reverse shoulder arthroplasties. *J Shoulder Elbow Surg.* 2009 May-Jun;18(3):495-502. Epub 2009 Feb 27.

72. Reitman RD, Kerzhner E. Reverse shoulder arthroplasty as treatment for comminuted proximal humeral fractures in elderly patients. *Am J Orthop (Belle Mead NJ).* 2011 Sep;40(9):458-61.

73. Cuff D, Pupello D, Virani N, Levy J, Frankle M. Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency. *J Bone Joint Surg Am.* 2008 Jun;90(6):1244-51.

74. Frankle M, Levy JC, Pupello D, Siegal S, Saleem A, Mighell M, Vasey M. The reverse shoulder prosthesis for glenohumeral arthritis associated with severe rotator cuff deficiency: a minimum two-year follow-up study of sixty patients surgical technique. *J Bone Joint Surg Am.* 2006 Sep;88(Suppl 1 Pt 2):178-90.

75. Castricini R, Gasparini G, Di Lugo F, De Benedetto M, De Gori M, Galasso O. Health-related quality of life and functionality after reverse shoulder arthroplasty. *J Shoulder Elbow Surg.* 2013 Dec;22(12):1639-49. Epub 2013 Mar 19.

76. De Biase CF, Delcogliano M, Borroni M, Castagna A. Reverse total shoulder arthroplasty: radiological and clinical result using an eccentric glenosphere. *Musculoskelet Surg.* 2012 May;96(Suppl 1):S27-34. Epub 2012 Apr 20.

77. Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of glenosphere position on scapular notching following reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2011 Sep;20(6):968-74. Epub 2011 Mar 12.

78. Klein M, Juschka M, Hinkenjann B, Scherger B, Ostermann PA. Treatment of comminuted fractures of the proximal humerus in elderly patients with the Delta III reverse shoulder prosthesis. *J Orthop Trauma.* 2008 Nov-Dec;22(10):698-704.

79. Choi S, Bae JH, Kwon YS, Kang H. Clinical outcomes and complications of cementless reverse total shoulder arthroplasty during the early learning curve period. *J Orthop Surg Res.* 2019 Feb;18(1):53.

80. Rhee YG, Cho NS, Moon SC. Effects of humeral component retroversion on functional outcomes in reverse total shoulder arthroplasty for cuff tear arthropathy. *J Shoulder Elbow Surg.* 2015 Oct;24(10):1574-81. Epub 2015 May 5.

81. Cheung EV, Sarkissian EJ, Sox-Harris A, Comer GC, Saleh JR, Diaz R, Costouros JG. Instability after reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2018 Nov;27(11):1946-52. Epub 2018 Jun 19.

82. Chalmers PN, Slikker W 3rd, Mall NA, Gupta AK, Rahman Z, Enriquez D, Nicholson GP. Reverse total shoulder arthroplasty for acute proximal humeral fracture: comparison to open reduction-internal fixation and hemiarthroplasty. *J Shoulder Elbow Surg.* 2014 Feb;23(2):197-204. Epub 2013 Sep 27.

83. Kohan EM, Chalmers PN, Salazar D, Keener JD, Yamaguchi K, Chamberlain AM. Dislocation following reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2017 Jul;26(7):1238-45. Epub 2017 Feb 3.

84. Friedman RJ, Flurin PH, Wright TW, Zuckerman JD, Roche CP. Comparison of reverse total shoulder arthroplasty outcomes with and without subscapularis repair. *J Shoulder Elbow Surg.* 2017 Apr;26(4):662-8. Epub 2016 Oct 27.

85. Kalouche I, Sevivas N, Wahegaonker A, Sauzieres P, Katz D, Valenti P. Reverse shoulder arthroplasty: does reduced medialisation improve radiological and clinical results? *Acta Orthop Belg.* 2009 Apr;75(2):158-66.

86. Romano AM, Oliva F, Nastrucci G, Casillo P, Di Giunta A, Susanna M, Ascione F. Reverse shoulder arthroplasty patient personalized rehabilitation protocol. Preliminary results according to prognostic groups. *Muscles Ligaments Tendons J.* 2017 Sep;18(7):263-70.

87. Leung B, Horodyski M, Struk AM, Wright TW. Functional outcome of hemiarthroplasty compared with reverse total shoulder arthroplasty in the treatment of rotator cuff tear arthropathy. *J Shoulder Elbow Surg.* 2012 Mar;21(3):19-23. Epub 2011 Aug 26.

88. Berliner JL, Regalado-Magdos A, Ma CB, Feeley BT. Biomechanics of reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2015 Jan;24(1):150-60. Epub 2014 Oct 29.

89. Walker D, Matsuki K, Struk AM, Wright TW, Banks SA. Scapulohumeral rhythm in shoulders with reverse shoulder arthroplasty. *J Shoulder Elbow Surg.* 2015 Jul;24(7):1129-34. Epub 2015 Jan 13.

90. Walker D, Wright TW, Banks SA, Struk AM. Electromyographic analysis of reverse total shoulder arthroplasties. *J Shoulder Elbow Surg.* 2014 Feb;23(2):166-72. Epub 2013 Aug 14.

91. Matsuki K, Sugaya H, Hoshika S, Takahashi N, Kenmoku T, Banks SA. Scaption kinematics of reverse shoulder arthroplasty do not change after the sixth postoperative month. *Clin Biomech (Bristol, Avon).* 2018 Oct;58:1-6. Epub 2018 Jul 5.

92. Kwon YW, Pinto VJ, Yoon J, Frankle MA, Dunning PE, Sheikhzadeh A. Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2012 Sep;21(9):1184-90. Epub 2011 Oct 29.

93. Lee KW, Kim YI, Kim HY, Yang DS, Lee GS, Choy WS. Three-dimensional scapular kinematics in patients with reverse total shoulder arthroplasty during arm motion. *Clin Orthop Surg.* 2016 Sep;8(3):316-24. Epub 2016 Aug 10.

94. Wiater BP, Koueiter DM, Maerz T, Moravek JE Jr, Yonan S, Marcantonio DR, Wiater JM. Preoperative deltoid size and fatty infiltration of the deltoid and rotator cuff correlate to outcomes after reverse total shoulder arthroplasty. *Clin Orthop Relat Res.* 2015 Feb;473(2):663-73. Epub 2014 Nov 12.

95. Kiet TK, Feeley BT, Naimark M, Gajiu T, Hall SL, Chung TT, Ma CB. Outcomes after shoulder replacement: comparison between reverse and anatomic total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2015 Feb;24(2):179-85. Epub 2014 Sep 9.

96. Boileau P, Chuinard C, Roussanne Y, Bicknell RT, Rochet N, Trojani C. Reverse shoulder arthroplasty combined with a modified latissimus dorsi and teres major tendon transfer for shoulder pseudoparalysis associated with dropping arm. *Clin Orthop Relat Res.* 2008 Mar;466(3):584-93. Epub 2008 Jan 25.

97. Boileau P, Rumian AP, Zumstein MA. Reversed shoulder arthroplasty with modified L'Episoco for combined loss of active elevation and external rotation. *J Shoulder Elbow Surg.* 2010 Mar;19(2)(Suppl):20-30.

98. Boughrebi O, Kilinc A, Valenti P. Reverse shoulder arthroplasty combined with a latissimus dorsi and teres major transfer for a deficit of both active elevation and external rotation. Results of 15 cases with a minimum of 2-year follow-up. *Orthop Traumatol Surg Res.* 2013 Apr;99(2):131-7. Epub 2013 Mar 17.

99. Shi LL, Cahill KE, Ek ET, Tompson JD, Higgins LD, Warner JJ. Latissimus dorsi and teres major transfer with reverse shoulder arthroplasty restores active motion and reduces pain for posterosuperior cuff dysfunction. *Clin Orthop Relat Res.* 2015 Oct;473(10):3212-7. Epub 2015 Jul 3.

100. Gerber C, Pennington SD, Lingenfelter EJ, Sukthankar A. Reverse Delta-III total shoulder replacement combined with latissimus dorsi transfer. A preliminary report. *J Bone Joint Surg Am.* 2007 May;89(5):940-7.

101. Ortmaier R, Resch H, Hitzl W, Mayer M, Blocher M, Vasvary I, Mattiassich G, Stundner O, Tauber M. Reverse shoulder arthroplasty combined with latissimus dorsi transfer using the bone-chip technique. *Int Orthop.* 2014 Mar;38(3):553-9. Epub 2013 Oct 17.

102. Alentorn-Geli E, Samitier G, Torrens C, Wright TW. Reverse shoulder arthroplasty. Part 2: systematic review of reoperations, revisions, problems, and complications. *Int J Shoulder Surg.* 2015 Apr-Jun;9(2):60-7.

103. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. *J Shoulder Elbow Surg.* 2011 Jan;20(1):146-57.

104. Boileau P. Complications and revision of reverse total shoulder arthroplasty. *Orthop Traumatol Surg Res.* 2016 Feb;102(1)(Suppl):S33-43. Epub 2016 Feb 12.

105. Sheth MM, Sholder D, Getz CL, Williams GR, Namdari S. Revision of failed hemiarthroplasty and anatomic total shoulder arthroplasty to reverse total shoulder arthroplasty. *J Shoulder Elbow Surg.* 2019 Jun;28(6):1074-81. Epub 2019 Feb 1.

106. Melis B, Bonneville N, Neyton L, Lévigne C, Favard L, Walch G, Boileau P. Glenoid loosening and failure in anatomical total shoulder arthroplasty: is revision with a reverse shoulder arthroplasty a reliable option? *J Shoulder Elbow Surg.* 2012 Mar;21(3):342-9. Epub 2011 Nov 1.

107. Levy J, Frankle M, Mighell M, Pupello D. The use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty for proximal humeral fracture. *J Bone Joint Surg Am.* 2007 Feb;89(2):292-300.

108. Levy JC, Virani N, Pupello D, Frankle M. Use of the reverse shoulder prosthesis for the treatment of failed hemiarthroplasty in patients with glenohumeral arthritis and rotator cuff deficiency. *J Bone Joint Surg Br.* 2007 Feb;89(2):189-95.

109. Black EM, Roberts SM, Siegel E, Yannopoulos P, Higgins LD, Warner JJ. Reverse shoulder arthroplasty as salvage for failed prior arthroplasty in patients 65 years of age or

younger. *J Shoulder Elbow Surg.* 2014 Jul;23(7):1036-42.

110. Schliemann B, Theisen C, Kösters C, Raschke MJ, Weimann A. Reverse total shoulder arthroplasty for type I fracture sequelae after internal fixation of proximal humerus fractures. *Arch Orthop Trauma Surg.* 2017 Dec;137(12):1677-83. Epub 2017 Sep 15.

111. Patel DN, Young B, Onyekwelu I, Zuckerman JD, Kwon YW. Reverse total shoulder arthroplasty for failed shoulder arthroplasty. *J Shoulder Elbow Surg.* 2012 Nov; 21(11):1478-83. Epub 2012 Feb 22.

112. Gallinet D, Adam A, Gasse N, Rochet S, Obert L. Improvement in shoulder rotation in complex shoulder fractures treated by reverse shoulder arthroplasty. *J Shoulder Elbow Surg.* 2013 Jan;22(1):38-44. Epub 2012 Jun 15.

113. Grubhofer F, Wieser K, Meyer DC, Catanzaro S, Beeler S, Riede U, Gerber C. Reverse total shoulder arthroplasty for acute head-splitting, 3- and 4-part fractures of the proximal humerus in the elderly. *J Shoulder Elbow Surg.* 2016 Oct;25(10):1690-8. Epub 2016 Apr 15.

114. Hawthorne JR, Carpenter EM, Lam PH, Murrell GAC. Effects of abduction pillows on rotator cuff repair: a biomechanical analysis. *HSS J.* 2018 Jul;14(2):114-22. Epub 2017 Dec 26.

115. Garofalo R, Flanagin B, Castagna A, Lo EY, Krishnan SG. Reverse shoulder arthroplasty for proximal humerus fracture using a dedicated stem: radiological outcomes at a minimum 2 years of follow-up-case series. *J Orthop Surg Res.* 2015 Aug 22;10:129.

116. Bufquin T, Hersan A, Hubert L, Massin P. Reverse shoulder arthroplasty for the treatment of three- and four-part fractures of the proximal humerus in the elderly: a pro-spective review of 43 cases with a short-term follow-up. *J Bone Joint Surg Br.* 2007 Apr;89(4):516-20.

117. Heyward OW, Vegter RJK, de Groot S, van der Woude LHV. Shoulder complaints in wheelchair athletes: a systematic review. *PLoS One.* 2017 Nov 21;12(11):e0188410.

118. Kemp AL, King JJ, Farmer KW, Wright TW. Reverse total shoulder arthroplasty in wheelchair-dependent patients. *J Shoulder Elbow Surg.* 2016 Jul;25(7):1138-45. Epub 2016 Feb 16.

119. Alentorn-Geli E, Wanderman NR, Assenmacher AT, Sánchez-Sotelo J, Cofield RH, Sperling JW. Reverse shoulder arthroplasty in weight-bearing shoulders of wheelchair-dependent patients: outcomes and complications at 2 to 5 years. *PM R.* 2018 Jun;10(6):607-15. Epub 2017 Oct 27.